H=-16t^2+368t

Simple and best practice solution for H=-16t^2+368t equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for H=-16t^2+368t equation:



=-16H^2+368H
We move all terms to the left:
-(-16H^2+368H)=0
We get rid of parentheses
16H^2-368H=0
a = 16; b = -368; c = 0;
Δ = b2-4ac
Δ = -3682-4·16·0
Δ = 135424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{135424}=368$
$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-368)-368}{2*16}=\frac{0}{32} =0 $
$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-368)+368}{2*16}=\frac{736}{32} =23 $

See similar equations:

| x2–2x–15=0 | | -4x2+x+3=0 | | 4(3-x)+8=2(5-3x) | | 2x2–5x+3=0 | | 5x-2.5x+6x-3=x(2x-1) | | 5x2+26x+24=0 | | 15.g=15135 | | 2^(x+3)=2^(2x) | | 2^((x+3))=2^(2x) | | D^2+4d=-3 | | 1/3x-7=57 | | p-41=68 | | 14/p=2;p=7 | | 1+2i/2-3i=0 | | 13-w=10;w=2 | | 12(5+2y)=47-(5-9y) | | 60=5-3y | | 7/8-3/4x=-6 | | x^2-0.6x+0.4=0 | | 7/8-3/4x=6 | | 2v=12;v=10 | | -13c+18=18-7c | | -2(3x+x)=10 | | 3^(2x+7)=9 | | .4(k−1.3)=15.12 | | 7500+100.25x=6296+175.5x | | x+x/2=240 | | 10/x=95/28 | | 7500+100.25x=6296+175.5 | | 17-d/13=15 | | x+30+2x+5=180 | | 9/5=162/x |

Equations solver categories